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Abstract
This paper is concerned with a universal pattern, which

is defined as a character pattern designed to have high
machine-readability. This universal pattern is a charac-
ter pattern printed with stripes. The cross ratio calculated
from the widths of the stripes represents the character class.
Thus, if the boundaries of the stripes can be detected for
measuring the widths, the class can be determined without
ordinary recognition process. Furthermore, since the cross
ratio is invariant to projective distortions, the correct class
will be still determined under those distortions. This pa-
per describes a practical scheme to recognize this universal
pattern. The proposed scheme includes a novel algorithm to
detect the stripe boundaries stably even from the universal
pattern image contaminated by non-uniform lighting and
noise. The algorithm is realized by a combination of a dy-
namic programming-based optimal boundary detection and
a finite state automaton which represents the property of
the universal pattern. Experimental results showed the pro-
posed scheme could recognize 99.6% of the universal pat-
tern images which underwent heavy projective distortions
and non-uniform lighting.

1. Introduction

In upcoming ubiquitous computing era, character pat-
terns in 3D-scene will be often exposed to cameras and
sometimes recognized by machines. Thus, character pat-
terns can be promising media for ubiquitous computing, if
they possess not only perfect human-readability but also
high machine-readability. In this paper, the character pat-
tern which possesses both readabilities is called universal
pattern.

OCR/MICR fonts [1] are classical universal patterns.
Their machine-readabilities, however, are not sufficient in
the ubiquitous computing era; they were designed for scan-
ners or magnetic readers and thus not for cameras. As listed
in [2], character patterns acquired by cameras undergo vari-
ous distortions which do not appear in character patterns ac-
quired by scanners. For example, projective distortion and
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Figure 1. (a) The universal pattern “A” pro-
posed in [3, 4]. (b) Observation line to extract
class information.

non-uniform lighting will seriously disturb the recognition
of not only ordinary character patterns but also OCR/MICR
fonts.

In [3, 4], a universal pattern has been proposed for
camera-based recognition. Hereafter, the term “universal
pattern” refers to the character pattern proposed in [3, 4],
although we can consider another universal pattern such as
[5]. Figure 1 (a) shows the universal pattern of [3, 4]. This
universal pattern is a character pattern printed with a set
of horizontal stripes, called a cross ratio pattern, to realize
high machine-readability. The cross ratio calculated from
the widths of the stripes represents the character class. This
fact means the character class can be determined without
ordinary recognition process if the cross ratio is extracted
correctly. In addition, the correct class will be determined
under projective distortions because the cross ratio is invari-
ant to projective distortions.

This paper describes a practical scheme to recognize the
universal pattern in real scene. For determining the widths
of the stripes, the boundaries of the stripes should be de-
tected. One of the main contributions of this paper is the
proposal of a novel algorithm to detect the boundaries stably
even from universal pattern images contaminated by non-
uniform lighting and noise1. The algorithm is realized by
a combination of dynamic programming (DP) and a finite

1Note that the trial in [3, 4] was a simulation experiment without any
grayscale change and therefore the boundaries can be detected just by
checking the grayscale value at each pixel.
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Figure 2. Contamination of grayscale value by non-uniform lighting and noise. (a) Character im-
age and an observation line. (b) Grayscale value f(x) along the observation line. (c) A boundary
detection result without FSA. (d) A result with FSA.
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Figure 3. (a) Grayscale value f(x) along an
observation line. (b) Search for optimal seg-
mentation by DP. (c) Piecewise-constant ap-
proximation of f(x) and boundary sequence
x1, . . . , xN .

state automaton (FSA) which represents the property of the
universal pattern. Note that the proposed boundary detec-
tion algorithm is rather general one and it can be applied
to other various tasks. Another contribution is to report
the results of a recognition experiment of universal pattern
images really acquired by a camera. The results showed
that even universal patterns with heavy projective distor-
tions and non-uniform lighting could be recognized with a
very high accuracy.

2. Universal Pattern for Camera-Based Char-
acter Recognition

2.1. Embedment of class information

The universal pattern proposed in [3, 4] is a character
pattern printed with the cross ratio pattern of Fig 1 (a) to
realize high machine-readability. The cross ratio pattern is
comprised of five horizontal stripes. The top and the bot-

tom stripes are guides, which have a fixed width and define
the beginning and the end of the cross ratio pattern. The
remaining three stripes have variable widths, l1, l2, and l3
and provide a cross ratio r by

r =
(l1 + l2)(l2 + l3)
l2(l1 + l2 + l3)

. (1)

In this paper, we assume that all the universal patterns
of class k are printed with the same cross ratio pattern with
r = rk. In addition, we also assume rk �= r′k if k �= k′.
Under these assumptions, the class of a universal pattern
can be determined, theoretically, just by extracting the cross
ratio rk.

2.2. Extraction of class information —
Overview

The cross ratio rk can be obtained by drawing an obser-
vation line p on the universal pattern. As shown in Fig. 1(b),
the observation line p passes across the cross ratio pattern.
Since the stripes are parallel originally and the cross ratio is
a projective invariant, we can obtain the original cross ratio
rk by using measured widths l′1, l

′
2, and l′3 instead of l1, l2,

and l3 in (1) regardless of camera angle and the position and
the slope of the observation line p.

The extracted cross ratio may be erroneous due to insuffi-
cient camera resolution, blurring, non-uniform lighting, etc.
Thus, we use the following voting strategy for a robust es-
timation of rk: (i) we draw the observation line p on the
character pattern P times changing its position and slope
randomly, (ii) obtain P cross ratio values, (iii) quantize each
of those values into one of {rk}, and (iv) choose the most
frequent rk as the cross ratio embedded.

3. FSA-Guided Boundary Detection for Ex-
traction of Class Information

3.1. Optimization-based boundary detec-
tion

For measuring the widths l′1, l
′
2, and l′3, it is neces-

sary to detect the boundaries on f(x) which represents the
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Figure 4. (a) Decomposition of the universal
pattern into ten region types. (b) Transition of
region types along the observation line in (a).
(c) FSA representing all possible transitions.

grayscale value at the position x (xs ≤ x ≤ xe) on an
observation line. Figure 2 (a) and (b) show a character pat-
tern with an observation line and f(x) along the observation
line. Simple threshold-based techniques are insufficient to
detect the boundaries because the grayscale value on the ob-
servation line will be contaminated by non-uniform lighting
and other noises. As shown in Fig. 2 (b), the originally dif-
ferent grayscale values pointed by two arrows become sim-
ilar due to non-uniform lighting.

An alternative is an optimization-based boundary de-
tection technique whose basic idea is optimal piecewise-
constant approximation of f(x). Figures 3 (a) and (c) show
an example of f(x) and its piecewise-constant approxima-
tion. The ends of constant segments will indicate a bound-
ary of the stripes.

The objective function of the approximation is formu-
lated as

J1 =
N∑

n=2

∫ xn

xn−1

∥∥f(x) − f̄xn−1,xn

∥∥ dx, (2)

and to be minimized with respect to the boundary sequence,
x1, . . . , xn, . . . , xN , subject to the conditions, xn−1 < xn,
x1 = xs, and xN = xe. The value f̄xn−1,xn

is the average
grayscale value within the segment [xn−1, xn]. The min-
imization can be represented as an optimal path problem
from x1 to xN as shown in Fig. 3 (b) and solved by a DP
algorithm efficiently. While we omit the details of the DP
algorithm here, readers can find similar DP algorithms as
recognition-based segmentation algorithms for handwritten
text [6] and speech [7].

3.2. Incorporation of FSA
The above boundary detection technique still has two

drawbacks for our task. First, it cannot distinguish the
boundaries of the stripes from the boundaries between char-
acter stroke and background. (The latter boundaries are not

necessary to extract the cross ratio.) Second, the above tech-
nique still produces spurious boundaries due to noise and
overlooks genuine boundaries.

Incorporation of an FSA is very useful to remedy those
drawbacks since it can exploit the property of the univer-
sal pattern. For designing the FSA, we first consider ten
regions, B0, B1, B2, B3, B+, F1, F2, F+, G1, and G2
of Fig. 4 (a). The first five regions correspond to back-
ground regions, the next three regions correspond to char-
acter stroke regions, and the remaining two regions corre-
spond to the two guides. The region F+ has a different
grayscale value from the regions F1/F2 due to the overlay
of the middle stripe of the cross ratio pattern. Similarly, the
region B+ has a different grayscale value from the regions
B0/B1/B2/B3. Figure 4 (b) shows the transition of the re-
gions along the observation line of Fig. 4 (a). It is easy to
confirm that every possible transition like Fig. 4 (b) will be
described as a state transition of the FSA of Fig. 4 (c).

We consider an incorporation of the FSA into the tech-
nique of 3.1. By the incorporation, we can assign a state
(i.e., a region) to each segment and thus distinguish the nec-
essary boundaries from the unnecessary boundaries. In ad-
dition, we can expect far better results as discussed later.
The objective function after the incorporation of the FSA is
defined as

J2 =
N∑

n=2

[ ∫ xn

xn−1

∥∥f(x) − f̄xn−1,xn

∥∥ dx

+ q(xn, xn−1 | sn, sn−1)
]
, (3)

where sn represents the state to which the segment
[xn−1, xn] corresponds. The objective function J2 should
be minimized with respect to not only the boundary se-
quence x1, . . . , xN but also state sequence s1, . . . , sN ,
where the state transition sn−1 → sn should be allowed
by the FSA.

The function q “penalizes” erroneous combinations of
the two consecutive segments [xn−2, xn−1] and [xn−1, xn]
and the two states sn−1 and sn. Assuming sn−1 = B+
and sn = B2, the two segments should satisfy the condi-
tion f̄xn−2,xn−1 < f̄xn−1,xn

. This is because the region of
type B+ should have a lower (darker) grayscale value than
the region of type B2. (See Fig. 4(a).) If the condition does
not hold, the function q returns ∞ to prohibit this segmenta-
tion; otherwise q returns 0 to allow the segmentation. Thus,
by the incorporation of the function q, we can exclude the
segmentation which does not agree with the property of the
universal pattern.

It should be noted that the function q checks the rela-
tive brightness of two consecutive segments and does not
check any absolute brightness. The relative brightness is
far more stable against non-uniform lighting and noise than
the absolute brightness. The idea of this relative evaluation



is novel one and cannot be found in the conventional DP-
based segmentation algorithms, such as recognition-based
segmentation [6, 7].

The foregoing DP algorithm for the minimization of J1

with respect to {xn} can be extended for the minimization
of J2 with respect to {(xn, sn)}. Simply speaking, this ex-
tension can be done by re-organizing the x–n search space
of Fig. 3(b) to be an (x, s)–n search space. After the op-
timal sequence of {(xn, sn)} is obtained, l′1, l

′
2, and l′3 are

obtained using xn related to stripe boundaries.
Details of the extended DP algorithm is omitted here

except for the important point that f̄xn−2,xn−1 in q is ap-
proximated as f̄xn−1−ε,xn−1 , where ε is a positive constant.
Without this approximation, q depends on xn−2 in addition
to xn−1 and xn. Thus, the minimization of J2 becomes a
problem on a second-order Markovian process and requires
prohibitive computations.

3.3. Estimation of the number of bound-
aries

The correct number of boundaries, N , is not known in
advance. Thus, all possible Ns should be examined; that
is, the above algorithm is performed repeatedly for each N .
Fortunately, the Markovian nature of the DP-algorithm al-
lows us to obtain the optimal solution at N from that at
N − 1 with very few computations. If a certain N gives a
boundary detection result which is acceptable by the FSA
and provides the minimum J2, this N is considered as the
correct one.

4. Experimental Results

4.1. Experimental setup

The universal patterns of 26 English capital letters
(Fig. 5) were printed on a paper. The original intensity val-
ues were: 255 for B0/B1/B2/B3, 215 for B+, 0 for F1/F2,
80 for F+, and 175 for G1/G2. Then they were acquired
as grayscale images by a camera from 9 different angles
as shown in Fig. 6. The lighting condition was not con-
trolled with the angles and thus the images underwent the
distortion by non-uniform lighting as well as the projec-
tive distortion. The average size of the universal pattern
images was 381×291 (pixels). Then, P = 81 observation
lines were drawn on each universal pattern image and the
proposed boundary detection algorithm was applied to each
observation line. Thus, there were 26 × 9 = 234 universal
pattern images and 234 × 81 ∼ 19, 000 observation lines.

4.2. Qualitative evaluation of boundary de-
tection result

Figures 2 (c) and (d) show the results of boundary detec-
tion on an observation line. The result (c) was obtained by

Figure 5. Universal patterns used in our ex-
periment.
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Figure 6. Camera angles.

solving the minimization problem of J1. It is observed that
two spurious boundaries were detected and the two bound-
aries of the lower guide were overlooked. In contrast, the
proposed technique provided the result (d) and could avoid
those spurious and overlooked boundaries. This improve-
ment was achieved by the incorporation of the FSA; it could
exclude inadmissible segmentation in (c) where the aver-
age grayscale values decreases gradually on five consecu-
tive segments.

4.3. Quantitative evaluation of segmenta-
tion result

The ratio of the observation lines whose cross ratio rk

were extracted correctly was 69.2%. The extracted cross
ratio becomes erroneous even if only a single boundary is
detected wrongly and the remaining N − 1 boundaries are
detected successfully. Thus, the ratio of boundaries detected
correctly will be far higher than 69.2%.

Figure 7 shows the correct detection ratio of each class
and Fig. 8 shows the ratio of each camera angle. Both fig-
ures reveal that the correct extraction ratio is stable against
character shapes and camera angles. Especially, Fig. 8
proves the invariance of the cross ratio against projective
distortions.

The proposed technique failed to extract correct cross ra-
tios due to the following three reasons.

• Failure to estimate the number of boundaries on the ob-
servation line. In fact, this failure was found in 19.1%
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Figure 8. Extraction accuracy of cross ratios
for each camera angle. Each angle ID (1∼9)
corresponds to the number in Fig. 6.

of the 19, 000 observation lines.

• Erroneous detection of boundaries. The boundary de-
tected at a slightly different position was sometimes
accepted by the FSA.

• Unexpected f(x). For example, if an observation line
passes a point where a character boundary crosses a
stripe boundary, such an unexpected region change
(e.g., B1→ F+) will happen; the FSA will reject this
change. Fortunately, this problem is not serious; as
shown in Figs. 7 and 8, most (∼ 98%) observation lines
were accepted by the FSA.

4.4. Recognition accuracy

As noted in 2.2, the final recognition result of a charac-
ter pattern was determined by the voting of P = 81 ex-
traction results. The overall character recognition rate was
99.6%=233/234, that is, only one universal pattern image
was misrecognized. This near-perfect recognition rate re-
sults from the fact that the ratio of the observation lines with
correct rk was 69.2% (> 50%).

The misrecognized image was “O” whose recognition
result was “N”. Among its 81 observation lines, 27 lines

were “N” and 26 lines were “O”. As shown in Fig. 5, the
cross ratio patterns of “N” and “O” are similar and their
small difference caused the misrecognition.

5. Conclusion

A practical scheme of recognizing a universal pattern has
been proposed. The universal pattern is a character pattern
printed with a set of horizontal stripes, called cross ratio pat-
tern, for realizing high machine-readability. The cross ratio
calculated from the widths of the stripes represents class in-
formation and is invariant to projective distortions. Thus, if
the boundaries of the stripes are detected correctly, we can
determine the character class regardless of projective distor-
tions.

A novel boundary detection technique has been proposed
to recognize the universal pattern. This is an optimization-
based technique with a guide of a finite state automaton
(FSA) for stable extraction of class information under heavy
change of grayscale values due to non-uniform lighting and
noise. Again, note that this technique is rather general and
thus applicable to other tasks.

An experiment of recognizing 234 universal pattern im-
ages acquired by a camera in scene was conducted. The ob-
tained recognition rate was 99.6%=233/234, that is, a near-
perfect rate. The boundary detection performance was also
very reasonable even though the character patterns were
heavily degraded by non-uniform lighting, noise, and pro-
jective distortions.
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