
Accepted Manuscript

More than Ink — Realization of a Data-Embedding Pen

Marcus Liwicki, Seiichi Uchida, Akira Yoshida, Masakazu Iwamura, Shinichiro

Omachi, Koichi Kise

PII: S0167-8655(12)00286-3

DOI: http://dx.doi.org/10.1016/j.patrec.2012.09.001

Reference: PATREC 5501

To appear in: Pattern Recognition Letters

Please cite this article as: Liwicki, M., Uchida, S., Yoshida, A., Iwamura, M., Omachi, S., Kise, K., More than Ink

— Realization of a Data-Embedding Pen, Pattern Recognition Letters (2012), doi: http://dx.doi.org/10.1016/j.patrec.

2012.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.patrec.2012.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.patrec.2012.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.patrec.2012.09.001

More than Ink — Realization of a Data-Embedding Pen

Marcus Liwickia, Seiichi Uchidab, Akira Yoshidab, Masakazu Iwamurac,
Shinichiro Omachid, Koichi Kisec

aDFKI, Germany, Email: marcus.liwicki@dfki.de
bKyushu Univ., Japan, Email: uchida@ait.kyushu-u.ac.jp

cOsaka Prefecture Univ., Japan
dTohoku Univ., Japan

Abstract

In this paper we present a novel digital pen device, called data-embedding
pen, for enhancing the value of handwriting on physical paper. This pen pro-
duces an additional ink-dot sequence along a written stroke during writing.
This ink-dot sequence represents arbitrary information, such as writer’s name
and writing date. Since the information is placed on the paper as an ink-dot
sequence, it can be retrieved just by scanning or photographing the paper.
In addition to the hardware of the data-embedding pen, this paper also pro-
poses a coding scheme for reliable data-embedding and retrieval. In fact, the
physical data-embedding on a paper will undergo various severe errors and
therefore a robust coding scheme is necessary. Through experiments on data
written by two writers, we show that we can embed 32 bits on short and
simple or even on more complex patterns and finally retrieve them with a
high reliability.

Keywords: data-embedding pen, stroke recovery, handwriting

1. Introduction1

Handwriting is an important modality for writing down information, mak-2

ing annotations, or just marking items. Unfortunately, as soon as the ink is3

on the paper, many information known during writing is already lost. We4

cannot access meta-information about the handwritten pattern from itself;5

it is impossible to retrieve who wrote this pattern or when it was written. In6

other words, a handwritten pattern on a physical paper is just an ink pattern7

and thus cannot provide any information but its shape.8

Preprint submitted to Pattern Recognition Letters September 12, 2012

Digital pens have emerged as a choice to store and retrieve such additional9

information. In fact, several digital pens capturing handwriting on normal10

paper have been developed. Those pens can store the stroke sequences on a11

computer with some additional information. Unfortunately, the digital pens12

cannot increase the value of handwriting on paper; even with the digital13

pens, the handwriting left on the paper is still just an ink pattern without14

any information.15

In this paper, we propose a novel pen device to enrich the handwriting on16

the physical paper. The proposed pen device, called data-embedding pen, can17

embed arbitrary information, such as meta-information, by an additional ink-18

dot sequence along the ink stroke of the handwriting. Each ink-dot represents19

an information bit and thus an ink-dot sequence represents a bit-stream of the20

information to be embedded. The information can be retrieved by scanning21

or photographing the paper and decoding the ink-dot sequence.22

The most important property of the data-embedding pen is to increase23

the value of handwriting on the physical paper. If we embed the writer ID,24

the handwriting on the physical paper itself stores this meta-information25

and identifies the writer without using an electronic memory. If we embed26

an URL into the handwriting, the handwriting becomes a link between the27

physical paper world and the cyber-space, i.e., the Internet. Furthermore, if28

we embed any temporal information or hints into the pattern, it is possible29

to convert the strokes into the online representation which is helpful to attain30

a better handwriting recognition accuracy.31

The contributions by this paper are summarized as follows.32

• The idea of embedding information into handwriting is very novel, as33

reviewed in Section 2.34

• For this idea, a prototype of the data-embedding pen is implemented35

using a special ink-jet nozzle element. Such an implementation has36

never been developed before.37

• For reliable data-embedding and data-retrieval, image processing tech-38

niques and a coding scheme are proposed, both of which are specialized39

for the data-embedding pen.40

• Experimental results with the prototype proved that arbitrary 32-bit41

information can be embedded into, for example, a 5cm-length hand-42

writing pattern and retrieved perfectly from the pattern.43

2

Note that this paper is not only the first compilation of the authors’ past44

trials (Uchida et al., 2006; Liwicki et al., 2010a,b, 2011) but also a new report45

of experimental results on a broader set of handwritten patterns.46

2. Related Work47

To the authors’ best knowledge, the data-embedding pen is the first48

trial on implementing a new pen device which can embed arbitrary infor-49

mation dynamically into handwriting on a paper. Generally, embedding50

data into paper has been done statically by a printer. For example, XEROX51

DataGlyph (Hecht, 1994) is a kind of digital watermarks and information is52

printed and embedded as a fine texture into font images or photographs.53

Digital pens are popular devices to enhance the usability of handwriting.54

Various types of digital pen devices are already available. Tablets are the55

most widely available digital pen-input modality. Wacom tablets1, for exam-56

ple, capture the pen-tip trajectory by a note-size flat pad with sensor array.57

Other digital pens use ultrasonic to capture the pen-tip location. All those58

digital pens are just useful to transfer handwritten patterns to the computer.59

In other words, they do not enhance the “function” of the handwriting on60

paper itself.61

Nowadays, the most famous digital pen seems to be the Anoto pen2.62

Anoto reads the dot pattern printed on the paper surface from its pen-tip63

camera and detects its absolute position on the paper by interpreting the64

pattern. By continuously detecting the position during the pen movement,65

Anoto can acquire the online trajectory. Like other digital pens, the Anoto66

pen also has a very different purpose from the data-embedding pen, i.e., just67

transferring the pattern to the computer. In fact, the handwritten pattern68

on the paper is just a pattern showing a stroke shape and thus no additional69

value. In contrast, the purpose of the data-embedding pen is to enhance the70

function of the handwritten pattern on paper.71

1http://www.wacom.com — last visited: November 2011
2http://www.anoto.com — last visited: November 2011

3

(a)

(b)

Figure 1: A prototype of the data-embedding pen (top). (a) Ink-dots (light) nearby a
handwriting stroke (black). (b) After image processing.

3. The Data-Embedding Pen72

3.1. Hardware Prototype73

The data-embedding pen is a device which comprises a usual ballpoint74

pen and an ink-jet nozzle element. Figure 1 (top) depicts a prototype of75

this device with the ballpoint pen at the top and the nozzle at the bottom.76

Figure 1 (a) is a handwritten pattern generated by the prototype. During77

the writing, the nozzle produces small ink-dots alongside the handwritten78

stroke. The color of the ink-dots is different from the color of the stroke.79

In this paper, yellow is used for the ink-dots for better visibility of the re-80

sults. Invisible ink is a good alternative for hiding the ink-dot sequence. In81

the past we have successfully performed experiments using invisible ink in82

combination with an ultraviolet camera (see Liwicki et al. (2010a)).83

4

It is possible to encode arbitrary information as an ink-dot sequence by84

changing the number, the timing, and the shape of the ink-dots, as shown85

in Fig. 1 (a). Very roughly speaking, this coding scheme is similar to Morse86

code, where short and long segments and a pause are used and arbitrary87

information is represented as their sequence. Our coding scheme is designed88

to be more robust and error-tolerant, as described in the later sections.89

The ink-dot shape can be controlled by using the high-frequency injection90

mode of the nozzle. The nozzle is able to generate up to 2, 000 ink-dots91

per second. Under this high-frequency mode, the ink-dots on the paper92

are connected and form a line segment. Hereafter, a line produced by n93

sequential ink-dots is called n-pulse line. If n = 1, the n-pulse line forms a94

single ink-dot. The line becomes longer by increasing n.95

Note that due to hardware-specific issues the hardware of the actual data-96

embedding pen differs from the original setup proposed in Uchida et al.97

(2006). One crucial aspect is that just one nozzle element is used, since98

it was not possible for us to integrate more than one nozzle element into99

a practicable device. However, it would be possible to do so by designing100

specific nozzle elements in cooperation with printer companies. Thus the101

contribution of this paper can be seen as proving that the data-embedding102

pen can be realized and therefore motivating printer companies to develop a103

hardware which would be able to produce smaller dots and including more104

than one nozzle element and thus enabling the pen to be used with smaller105

handwriting and to embed even more information.106

3.2. Applications107

Various kinds of information can be embedded into handwriting by the108

data-embedding pen. This means that we can consider various applications109

of the data-embedding pen. In this section, several possible applications110

will be shown. All applications make use of the fact that any data encoded111

in a binary sequence can be added alongside with the handwritten pattern.112

Depending on the length of the pattern, the amount of information varies.113

As shown later by the experimental results, the current prototype can em-114

bed arbitrary 32-bit information into a 5cm-length handwritten pattern, for115

example.116

Embedding information relating to the handwritten pattern itself is the117

simplest application. For example, writer’s ID, writing date, and writing118

Geo-location, are possible candidates. This “meta”-information of the hand-119

written pattern can be useful for enhancing signature verification and for120

5

usage in other forensic applications. In addition, if we know the writer’s ID,121

the recognition of the handwriting will become easier because we can ap-122

ply some character recognition model tuned to the writer. Discrimination of123

multiple writers on a single document is also possible, if the pen embeds the124

corresponding writer ID. More details of this application idea as well as the125

idea of embedding a “handwritten” bar-code linking link between physical126

paper world and the cyber-space are presented in Uchida et al. (2006).127

Embedding information on paper opens up new possibilities for diaries128

and notebooks. The owner of the book has only the paper documents at129

hand. However, still he or she can always find out when and where the130

information has been written down. Similarly, one can use the pen for writing131

an account of one’s journey or a diary. If the pen is equipped with a GPS-132

receiver, the time and place will be automatically attached to the handwritten133

sentences. After scanning the handwritten pages, the information can be134

uploaded as a blog or as contributions to a Web 2.0 platform.135

If we embed any temporal information by an ink-dot sequence, it is pos-136

sible to relax the difficulty of the stroke recovery problem (Doermann and137

Rosenfeld, 1995; Kato and Yasuhara, 2000; Nel et al., 2005), which is an in-138

verse problem to estimate the original writing order of a handwritten stroke139

pattern. This implies that we can convert handwritten images into online140

patterns and thus apply online handwriting recognition (Plamondon and Sri-141

hari, 2000; Vinciarelli, 2002), which is generally more accurate than offline142

recognition. Note that in this paper the writing direction, i.e., a kind of143

temporal information, is already embedded into the handwritten pattern for144

reliable data-retrieval.145

Note that for enabling a pen for such applications it needs to be equipped146

with the application-specific hardware. While the realization of such hard-147

ware is out of the scope of this paper, we will present some ideas for real-148

ization here. As mentioned above, the pen could be equipped with a small149

GPS-receiver and an internal clock to deliver time and place information for150

embedding. For writer authentification a small fingerprint sensor can be at-151

tached to the thumb-side of the pen. Furthermore, small motion sensors and152

a camera can be equipped for online recognition, document retrieval, and153

temporal information embedding. The feasability of equipping a pen with154

such sensors has been proven by the development of specific Anoto pens, such155

6

as the livescribe3. This pen also includes a small display as a user interface156

where in the case of the data-embedding pen the user could easily select the157

kind of data to be embedded.158

4. Data-Embedding159

4.1. Basic Coding Scheme160

Our coding scheme is based on the combination of three different n-pulse161

lines. Specifically, we use n = 1 (a dot), 5 (a short line), and 20 (a long line).162

These numbers have been fixed after a set of initial experiments with various163

n-pulse lines. The ink-dot sequence of Fig. 1 consists of those n-pulse lines.164

The information is converted into a binary (0 and 1) sequence and em-165

bedded by using the 1-pulse line as 0 and the 5-pulse line as 1. A short pause166

is prepared between each bit information (1-pulse or 5-pulse line). The 20-167

pulse line, hereafter called synchronization blob, is used as an anchor to make168

sure that a correct position is extracted. The leftmost ink-dot in Fig. 1 is a169

synchronization blob.170

Note that converted binary sequence is not directly embedded into the171

handwriting. We also apply an error-tolerant coding scheme for the original172

information after deriving the binary sequence. For example, the data “10”173

is not just converted into “1010”; after this conversion, the data is further174

converted into a redundant codeword to be more robust to error. More details175

will be given in Section 6.176

Using the n-pulse lines, three units, called frame, block, and bit are177

formed. The bit is the smallest unit and defined by a 1-pulse line or a 5-178

pulse line. Several consecutive bits comprises a block and several consecutive179

blocks comprises a frame. A pause which is longer than the pause between180

bits is inserted between two consecutive blocks. Each frame begins and ends181

at a synchronization blob.182

Figure 1 is an example of a single frame. From left to right, the ink-dot183

sequence of the frame is comprised of a synchronization blob, 6 blocks, and184

another synchronization blob. In each block, 4 bits are encoded and thus in185

the frame 24 bits (0110− 1010− 1010− 1010− 0000− 1100) are embedded.186

The main parameters of the coding scheme are the number of bits per187

block (bB) and the number of blocks per frame (bF). Accordingly, the num-188

ber of bits per frame becomes bF × bB. In the example of Fig. 1, bF = 6 and189

3http://www.livescribe.com

7

bB = 4. Another important parameter is the method for correcting errors190

which eventually occur when ink-dots overlap. More details about this issue191

follow in Section 6.192

4.2. Embedding Dynamic Information193

One of the difficulties in realizing the data-embedding pen is the stroke194

recovery problem. Specifically, since ink-dots are produced and embedded195

along the black-ink stroke, the writing order of the stroke has to be estimated196

for retrieving the embedded data. This is the so-called stroke recovery prob-197

lem (Doermann and Rosenfeld, 1995; Kato and Yasuhara, 2000; Nel et al.,198

2005) and a well-known difficult inverse problem. For example, no one can199

always give the correct writing order of a horizontal line “—”; it may be200

left-to-right, but also may be right-to-left. For handwritten patterns with201

crossing parts, their writing order becomes more difficult to be estimated.202

Fortunately, the ink-dot sequence can be used for relaxing the difficulty203

of the stroke recovery problem. The idea is to embed the writing direction204

by controlling the pause (gap) between consecutive n-pulse lines. This em-205

bedding can simply be realized by an additional pause added at the end of206

each frame, or equivalently, before each synchronization blob. Figure 4 in207

Section 5.4 shows this idea. Finally, the gap size shows the writing direction,208

i.e., the smaller gap has been produced after the synchronization blob.209

5. Data-Retrieval210

In this section the main steps for retrieving the information will be sum-211

marized. After capturing an image of the data-embedded pattern on paper,212

we first apply image processing techniques for extracting the ink-dots as well213

as the black-ink stroke. Then the stroke order recovery is performed to re-214

align the ink-dots in their original order Kato and Yasuhara (2000). Finally,215

the embedded data is retrieved through Reed-Solomon based error correction216

scheme.217

We can either use a scanner or a digital camera for image capturing.218

Camera-based capturing will introduce many difficulties which do not oc-219

cur on scanned images: different illuminations depending on the flashlight,220

varying sizes for the ink-dots, and different thickness for the strokes depend-221

ing on the distance between the camera and the paper. In Section 5.1, the222

image processing techniques for assessing these problems will be explained.223

8

Figure 2: Example of a photographed “@” symbol before image processing (top) and after
white normalization (bottom).

Note that the same procedures can also be applied on scanned documents.224

However, there they would have only minor effects which are negligible.225

5.1. Image Processing226

The results of the individual image processing steps for camera captured227

images are depicted in Fig. 2. There, an example of a photographed “@”228

symbol is given on the top. Next to it, two example regions which are part229

of the “@” symbol are illustrated to visualize the behavior of the algorithm.4230

As stated above, we can not assume the same illumination for all the231

photographs. The situation is even worse when we have inhomogeneous232

illumination, because usually, the center is more exposed by the flashlight.233

Simply using a global threshold for color extraction would fail under these234

circumstances. Therefore, as a first processing step, we use a low-resolution235

grid motivated from work in related areas (Jain, 1989; Simon et al., 2000)236

and determine the brightest point in each sub-region. This is then used as237

4The authors of this paper are aware that the yellow ink-dots in are hardly visible on
a grayscale-printout. We have done this intentionally for several reasons. First, we did
not want to alter the original image in order to show the difficulties for the algorithm.
Second, the extracted ink-dots will be marked in blue for all processed images, e.g., Fig. 3
(d). Finally, in the electronic version of the publication one can see the yellow ink.

9

(a) (b) (c)

(d) (e) (f)

Figure 3: Two loops with ink-dots and vizualization of the image processing steps on an
intersection part of the loops. See text for details.

a reference for white in this sub-region and the color values are normalized238

according to this value. This process is called white normalization. The239

result of white normalization in Fig. 2 (top) can be seen in Fig. 2 (bottom).240

The size of the sub-region was set to 50×50 pixels to make sure that at least241

one target white pixel is occurring in this region. Note that this method242

also works on homogeneous background colors. We have performed small243

tests which proved that it also works on blue and even yellow background.244

Experiments on non homogeneous background might fail, however, if invisible245

ink was used, the method would be successful again.246

10

5.2. Ink Extraction247

The second image processing step is the ink-dot extraction by a simple248

thresholding operation to identify the black ink stroke and yellow ink-dots.249

Subsequently, noise removal is performed, because the extracted black ink250

stroke image includes many noisy pixels, as shown in Fig. 3 (b). Thus, erosion251

and dilation are applied. Figure 3 (c) shows the result. Similar operations252

are also applied to the ink-dot image (Fig. 3 (d)). Note that the parameters253

for those operations can be optimized on a small training set.254

The third step is a special treatment of ink-dots occluded by the black ink255

stroke. Fortunately, those yellow ink-dots are still visible on the stroke, they256

just appear to be a bit darker. Thus, after extracting the pixels of the black257

ink stroke, another thresholding operation is performed on those pixels with a258

lower threshold to recover dark yellow ink-dots. In the following experiments259

it turned out that about 50% of those ink-dots could be recovered by this260

approach.261

The fourth step is a thinning operation on the black ink stroke. Fig-262

ure 3 (d) shows the result of an orthodox thinning method. Then, after263

removing many small loops and short spurious edges by unifying neighbor-264

ing branches, the final thinning result is obtained as shown in Fig. 3 (e). Up265

to here, the image processing methods are state-of-the-art methods (Nguyen266

and Blumenstein, 2010).267

5.3. Information Ink Assignment268

In order to make use of the embedded information, the n-pulse lines269

are assigned to the corresponding strokes5. The algorithm for finding these270

correspondence is described in this section.271

As shown in Fig. 3 (f), the basic idea of establishing the correspondence272

is to find the closest point on the stroke for each ink-dot. A simple nearest273

neighbor, however, cannot always provide a correct result because an ink-dot274

and its corresponding point might be a bit distant due to the pen tilt. Thus,275

at each ink-dot k, we first calculate the minimum distance dk,θ to the stroke276

for each θ of 36 angles with 10◦ interval. Then, we select the angle θ with277

minimum variance, i.e., θ = argminθ Var{d1,θ, . . . , dK,θ}. This angle is the278

most stable angle and thus represents a projection of the actual pen angle279

5Note that a stroke is seen as the sequence of points between a pen-down movement
and consecutive pen-up movement.

11

writing direction

Figure 4: An additional pause is used to determine the initial writing direction (top),
this can be observed by the larger gap on the left side of the big synchronization blob.
Illustration of the stroke direction recovery process (bottom).

and tilt during writing. Finally, for each ink-dot k, the corresponding point280

is determined as the closest point when using angle θ. If many ink-dots were281

not assigned to a stroke, this process is repeated, because it might be that282

the tilt has been changed during writing.283

5.4. Stroke Recovery284

Having the correspondence between the information ink and the stroke285

at hand, an estimation of the writing directions of the strokes is performed.286

In the following, an entire algorithm of the stroke recovery is explained using287

Fig. 4 as an example. This handwriting pattern can be seen as a graph where288

each crossing point on the stroke is a node. The algorithm is comprised of289

three major steps.290

First, the direction is estimated by using the gaps around the synchro-291

nization blobs. As noted in Section 4.2, the stroke direction is embedded as292

12

the difference in the widths of the gaps. Thus for the edges including one293

or more synchronization blobs it is possible to estimate the corresponding294

writing direction. The blue arrows in Fig. 4 indicate the initial estimation of295

the directions. Some short lines may have no synchronization blob and thus296

no guess is assigned on these edges.297

Second, we estimate the direction of the remaining edges. As an example,298

we consider the edge between Node 1 and Node 2, where no estimation result299

is given by the first step. The direction of this edge is determined as the300

outbound direction of Node 1. This is because among the other three edges301

of Node 1, two have an inbound direction and one has an outbound direction.302

Since the number of the inbound edges should be equal to the number of the303

outbound edges, the direction of the edge between Nodes 1 and 2 has to be304

outbound as well. This is furthermore confirmed by the situation at Node 2.305

By propagating the detected directions, many directions of unassigned edges306

can be determined using this strategy. The red arrows in Fig. 4 show the307

recovered directions after applying the second direction estimation step.308

Third, since the direction of edges of looping strokes and double traced309

edges still cannot be determined by using the first two steps, some special310

operations are performed on the remaining edges. Double traced edges are311

detected by counting the degree of the two nodes of the edge. If one or312

both nodes have an odd-number degree (Node 5 in Fig. 4) and the direction313

is unknown, the edge is treated as a double traced edges. All the edges314

identified as double traced are then duplicated. By this duplication, all nodes315

(except for the ending nodes) have an even-number degree. The duplicated316

lines are indicated by purple double-arrows in Fig. 4.317

The direction of loop edges are determined by a simple strategy called318

basic trace algorithm(BTA) (Kato and Yasuhara, 2000). According to BTA,319

when we arrive at an intersection node (i.e., a node with degree 4), we will320

take the center path. For example, when coming from Node 1 to Node 2 in321

Fig. 4 we take the center path and go to the top-right direction. The green322

arrows in Fig. 4 represent the directions finally detected.323

As a result of these steps we obtain the direction information of all edges.324

Now we start to trace the lines at the top-left edge with an end-node of325

degree 1 and an outbound direction. When arriving at a node of degree > 3326

during tracing, we go into the direction of a loop and also consider the BTA327

in tied situations. After reaching an end, the next untraced edge with an328

end-node of degree 1 is taken into account, etc.329

13

5.5. Data Decoding330

Since we have a sequence of the embedded ink-dots by the above processes,331

we now decode the sequence to retrieve the embedded information. The de-332

coding process starts with the recovery of the bit information, i.e., 1-pulse333

and 5-pulse lines and synchronization blobs, of every ink-dot, just by check-334

ing its size. The sequence is separated into frames using the synchronization335

blobs. Larger gaps are detected within each frame and assumed as the gaps336

between block.337

Next, a plausibility control is performed on the extracted data. For each338

block, the number of bits (bB) is confirmed. Sometimes a block has spurious339

bits, resulting from a wrong mapping or just from noise. In this case, those340

adjacent bits whose distance deviates too much from the mean distance are341

deleted. If the number of bits and blocks do not correspond to the values bB342

and bF , the frame is rejected.343

For detecting and correcting errors, the Reed-Solomon error correction is344

chosen. Details follow in the next section.345

6. Error Correction346

The process of embedding the ink next to the handwritten stroke is always347

accompanied with several errors. First, the black ink sometimes overlaps with348

the information ink (Fig 5 (b)). Second, several ink-dots might overlap at349

turning points or stopping points (Fig 5 (c)). Finally, the consecutive ink-350

dots on double traced strokes (Fig 5 (d)), are missed because we discarded351

them.352

In order to recover from the errors, some redundant information has to353

be added. Simple and intuitive ideas would be to apply repetition and parity354

check (Liwicki et al., 2010a). However, these encodings show some limi-355

tations, especially when it comes to more complicated handwritten patterns356

like signatures or handwritten words with many crossings and double strokes.357

In this paper we use Reed-Solomon error correction (MacWilliams and358

Sloane, 1977; Reed and Solomon, 1960) for reliably recovering from the oc-359

curring errors. The idea is to oversample a polynomial f(x) = a1 + a2 · x1 +360

. . . + ak · x(k−1) from the data with more points aj than needed. This makes361

the polynomial overdetermined. Therefore it is not needed to recover all362

points correctly as long as enough points are present. The only drawback of363

this encoding is that the position j of each point aj needs to be known for a364

reliable decoding. In this paper we design each frame to be comprised of two365

14

(a)

(b) (c) (d)

Figure 5: (a) Example of a difficult pattern. (b)–(d) Specific regions of the pattern.

blocks, the first block for the position of the point and the second block for366

its value. While the details of Reed-Solomon codes can be found in Reed and367

Solomon (1960), in this paper only the important parameters and properties368

of this encoding scheme are given.369

The first parameter of Reed-Solomon encoding is the base m bits for the370

points. In this paper we have set m = 4. This choice of this value is based on371

the observation that previous experiments have shown that shorter frames372

have a higher probability of being correctly decoded. Each frame consists of373

8 bit; 4 bit for the position and 4 bit for the value.374

The next parameter is the length n of the code (including data and error375

correction bits). Typically this value is set to its maximum value n = 2m− 1376

(the values have to be non-zero). This code is divided into k data points (the377

data to be encoded) and n− k points for error correction. Given the k data378

points a1, . . . , ak (a message to be encoded), the other values a(k+1), . . . , an379

of the polynomial are determined and all n points are encoded (sent).6 If the380

6The determination of the values is based on the primitive element of the finite field

15

handwritten patterns are long enough, the code is repeatedly embedded.381

In the decoding phase, not all n points need to be correctly recovered.
Assuming that c points were correctly recovered, s points are missing (era-
sures) and e points are erroneous, the code can still be correctly decoded if
the following equation holds:

2e + s ≤ n− k (1)

This important property makes the Reed-Solomon codes very useful for ap-382

plications where burst errors occur. In our case usually the a whole block can383

be either recognized or not, i.e., it rarely occurs that just one bit is missing384

(even if only one bit is missing, we do not know the position of the bit).385

Since we encode the positions of the points in the frame, the positions386

of the missing points are known before decoding. In the extreme case, up387

to n − k points can be missing and still it would be possible to decode the388

information correctly. In the other extreme case, i.e., if there is no missing389

point, up to (n − k)/2 errors are allowed to occur, which means for each390

erroneous point, one more correct point should be at hand.391

7. Experiments and Results392

The aim of our experiments is to prove that the concept of the data-393

embedding pen can be applied to real data and works on patterns with var-394

ious complexity. Therefore, after optimizing the system on a few patterns395

written by one writer and testing them on an independent set of patterns396

contributed by the same writer, we asked second, independent writer to write397

down several patterns. This makes sure that there is no bias between the398

system and the handwriting of one writer.399

7.1. Data400

Three sets of data-embedded handwriting were collected using the cur-401

rent pen prototype. The first set (Set1) contains 50 horizontal straight lines402

with a length of 20 cm. All lines have been drawn with approximately the403

same velocity, i.e., the usual writing speed. Experiments with varying veloc-404

ity appear in Liwicki et al. (2010a). The second set (Set2) contains patterns405

α and finding a function f(x) for which holds f(α(i−1)) = ai, for i = 1, . . . , k and then
applying f(x) to the remaining αi, i = k, . . . , n− 1.

16

Figure 6: Example images of Set2.

which might appear in a real world scenario, i.e., 12 “@” symbols, 12 check-406

marks, 12 simulated signatures, and 12 instances of the handwritten word407

“Clever”. The former two symbols have sizes of 3 × 3 cm at maximum, the408

latter symbols have a size of 4×3 cm. Examples for these patterns are shown409

in Figs. 5 and 6.410

The third set contains significantly more data contributed by the second411

writer. This writer contributed with 80–120 samples for each of the follow-412

ing patterns (the sizes mentiond in brackets correspond the height of the413

respective pattern):414

• straight lines (5cm) in all four directions (right, left, up, down)415

• “@” symbols (sizes: 3 cm and 5 cm)416

• checkmarks (sizes: 3 cm and 5 cm)417

• the word “Clever” (height 4 cm)418

• closed circles (diameters: 5 cm and 3 cm)419

• “X” (sizes: 3 cm and 5 cm)420

• Cursive “ll” (sizes: 3 cm and 5 cm)421

17

All examples have been written by the second person who was not aware422

of the processing methods. Note, however, that the writer was asked to423

write the patterns quite fast (using usual writing speed), because there has424

to be some distance between consecutive ink-dots in order to make them425

distinguishable.426

We intentionally asked the writer to write lines in both orientations in427

horizontal and vertical direction (resulting in four categories), as well as428

circles and “X”-shapes, because it is not possible to perfectly recover the429

trajectory information for these patterns if no information ink is available.430

Note, that for these patterns the original stroke-recovery method of Kato431

and Yasuhara (2000) would fail.432

7.2. Reed-Solomon Encoding433

For the Reed-Solomon encoding, the Shifra Open Source error correcting434

code library was used7. We used a Galois field polynomial of the order 4. The435

code length was fixed to 15 points (24 − 1), each point being a hexadecimal436

number (4 bit).437

One aspect of our experiments is to estimate a useful value for the pa-438

rameter k, i.e., the number of data points, as introduced in Section 6. We439

have varied k from 1 to 15. In order to overcome needless calculations,440

we applied the following strategy. First, we set k = 1 with a1 = 1 and441

computed the other values ai for this setting. The resulting code word is442

1, 9, 13, 15, 14, 7, 10, 5, 11, 12, 6, 3, 8, 4, 2. If we now set k = 2 and a2 = 9, the443

same values for aj|j > 2 would be estimated, and so on. This means that444

only the encoding of this code is needed and during decoding we can choose445

the actual value for k. This makes the full use of all collected data, i.e., it is446

not needed to write down new patterns for each value of k. Note that using447

this strategy also eliminates side-effects like more noise in some patterns,448

because always the same patterns are used for the evaluation.449

In the experiments on Set1 we wanted to find out how much information450

can be embedded in a straight line. In this experiments only very few de-451

coding errors occur on the frame level since there are no crossings. Figure 7452

provides an example for the extraction result of a 5 cm long part of a straight453

line where no errors occurred. The only problem were some overlapping ink-454

dots due to a slow pen-movement. This happened in about 10% of the455

7Available at http://www.schifra.com/ — last visited: November 2011

18

Table 1: Correctly recovered patterns for Set1 (varying line lengths) and Set2 in %
data points (k) # bits 5 cm 10 cm hook @ Meyer Clever

1 4 100 100 100 100 100 100
8 32 100 100 100 100 100 100
9 36 94 100 83 100 75 100
10 40 72 100 75 92 50 100
11 44 56 100 58 83 33 100
12 48 20 100 50 50 0 83
13 52 0 100 17 8 0 42
14 56 0 100 17 0 0 0
15 60 0 92 0 0 0 0

(a)

(b)

Figure 7: (a)Extraction result (after thinning) of a 5 cm long line of Set1 (enlarged). (b)
A problematic case where the information ink is smudged by the ballpoint pen.

frames. Note that these frames were rejected during the frame decoding step456

presented in Section 5.5, resulting in missing points for the Reed-Solomon457

error correction.458

7.3. Results for Set1459

As stated above, the straight lines had a length of 20 cm. Since the code460

was repeated, no errors occurred on these long lines. We decided to measure461

the results on shorter lines. Therefore we cut the line first into 10 cm parts462

and finally into 5 cm parts.463

The results of the experiments on Set1 appear in Table 1. This table464

shows the percentage of samples where the information could be correctly465

recovered by using the Reed-Solomon error correction. Up to a number of466

k = 8 the codeword was always correctly recovered even for straight lines as467

19

short as 5 cm. For larger k value, the performance decreases, because only a468

limited number of frames appear in a 5 cm line. (In Fig. 7 (a), for example,469

10 points (frames) appear.) For the length 10 cm there were only problems470

if no error correction point appears, i.e., it occured 8 times that there was a471

missing point which could not be recovered.472

In order to investigate the influence of using Reed-Solomon error correc-473

tion we have performed experiments without using this correction scheme.474

Alternatively, parity bits were used for each frame (Liwicki et al., 2010a).475

The advantage of using parity bits is that more data could be embedded476

into each frame; the disadvantage, however, is that it is harder to recover477

from burst errors. For both line lengths the recovery rate of the parity-bit478

method was only half of the Reed-Solomon based error correction (Liwicki479

et al., 2010b). Therefore we conclude that using Reed-Solomon encoding is480

the superior strategy.481

7.4. Results for Set2482

Table 1 presents the results of the experiments on Set2 on the right483

columns. On all patterns, codes of length 32 could be correctly recovered.484

It is a very interesting result that even on the more complicated patterns485

the correct information could be decoded. The main reasons for unsuccessful486

decoding are either missing points (for short sequences like the hook) or some487

errors, e.g., a 1-bit was interpreted as a 0-bit if it was partially occluded by488

black ink (first frame of Fig 5 (b)).489

7.5. Results for Set3490

In our experiments on Set3 we first evaluated the performance of the491

stroke recovery methods. A method without taking advantage of the stroke492

direction embedded into the ink-dot sequence, i.e., the approach of Kato493

and Yasuhara (2000), has been used as a reference system. The accuracy is494

defined as the number of edges with a correctly identified direction divided495

through the number of all edges.496

The results of the trajectory recovery appear in Table 2. As can be seen,497

the algorithm of Kato and Yasuhara (2000), denoted as “System 1”, performs498

already good on many patterns. However, it has some complications with499

closed circles, lines which go against the more common direction, and two-500

stroke patterns.501

Using the embedded information significantly increases the performance.502

Our method, denoted as “System 2”, works perfect on most patterns. Only503

20

Table 2: Performance comparison on Set3
System circles lines

3 cm 5 cm down right up left

Direction detection accuracy in %
1. Kato and Yasuhara (2000) — — 100 100 0 0
2. Proposed 100 100 100 100 100 100
3. With post-processing 100 100 100 100 100 100

Number of embedded bits if 100% information recovery rate is desired
3. 40 40 32 32 32 32

System “x” “ll” hooks clever
3 cm 5 cm 3 cm 5 cm 3 cm 5 cm

Direction detection accuracy in %
1. 50 50 100 100 100 100 80
2. 79 98 45 100 100 100 95
3. 79 98 100 100 100 100 96

Number of embedded bits if 100% information recovery rate is desired
3. 16 36 20 44 12 32 40

small patterns introduce some complications. An idea for post-processing504

is to apply the method of Kato and Yasuhara (2000) if only a single edge505

is available and no direction could be determined. The row indicated with506

“System 1” shows the performance if this strategy is applied. The final507

method performs with 100 % on 10 out of 13 patterns.508

The retrieval results for Set3 are shown in the last row of Table 2. This509

row shows the maximum amount of encoded bits if a perfect retrieval of all510

embedded information is desired. Note that the value for large patterns (size511

5cm) is at least 32. This result is similar to the results obtained on Set2.512

7.6. Failure Analysis513

An analysis of the failures shows that during acquisition some of the ink-514

dots were overlapping the pen-stroke. Specifically, when the tip of the ball-515

point pen touches already existing information ink-dots, the ink is smudged516

by the pen. Our algorithm is not able to recover the correct information517

(Fig. 7 (b)). In future we will try to tackle this problem by improving the518

image processing technologies.519

21

8. Conclusions and Ideas for Further Research520

In this paper we have presented a successful realization of the data-521

embedding pen. This pen makes it possible to augment handwritten patterns522

with additional information like the time of writing, the writer ID, and other523

application-dependent data. The main idea is to encode the desired informa-524

tion in an ink-dot sequence plotted nearby the writing strokes. The hardware525

design as well as the methods for embedding and recovering information have526

been also described.527

We proposed the use of the Reed-Solomon error correction scheme for suc-528

cessfully encoding and recovering the meta-information. The Reed-Solomon529

correction scheme uses an overdetermined polynom for encoding the data.530

During decoding only as many correct points are needed as the number of531

data points, disregarding their position. Other missing points do not dam-532

age the result. For each erroneous point one more correct points is needed533

to recover from the error.534

In our experiments we have shown that the Reed-Solomon error correction535

scheme is very useful if applied as proposed in this paper. In a first set of536

experiments, using a stroke length of just 5cm, 32 bits of information could537

be successfully embedded and recovered from straight lines.538

In the second set of experiments we have used more complex patterns,539

ranging from symbols to handwritten words. Even in this setup we could540

always recover 32-bit of information. Note that 32 bit is enough to distinguish541

232 people. This implies that if a company uses this tiny marks for showing542

that a certain employee has checked a document, it is possible to identify543

which employee has checked the document. Also note that small read/write544

RFID-cards usually allow to store the same amount of information (32 bit).545

These results have been confirmed on patterns contributed by another546

writer in a third data set. On this set, we have furthermore shown, that the547

direction recovery was improved by using the properties of the information548

ink-dots. In most cases, the directions of all edges have been correctly identi-549

fied. Only short edges in complicated patterns were sometimes not correctly550

recovered. However, this did not harm the information retrieval process as551

Reed-Solomon error correction has been applied.552

An interesting property of the data-embedding is that the shape of the553

n-pulse lines could be used to retrieve even more information about the554

dynamics. The speed information, for example, can be derived from the555

blocks within the frames. Since a new n-pulse line starts every 10 ms, the556

22

 Figure 8: Different length of the n-pulse lines depending on the velocity. (top: low velocity,
bottom: high velocity)

actual distances between the n-pulse lines encode the speed. Furthermore,557

longer n-pulse lines would correspond to faster writing (Fig. 8). Another idea558

is to estimate the tilt of the pen by using the correspondence information559

from the ink-dots to the line (see Section 5). Note that a shorter distance560

would indicate a smaller tilt angle if the nozzle is mounted on the pen as in561

Fig. 1 (top). Experimenting the accuracy of these algorithms is left to future562

work.563

References564

Doermann, D. S., Rosenfeld, A., 1995. Recovery of temporal information from565

static images of handwriting. International Journal of Computer Vision566

15 (1-2), 143–164.567

Hecht, D. L., 1994. Embedded data glyph technology for hardcopy digital568

documents. In: Color Imaging: Devide-Independent Color, Color Hard-569

copy and Graphic Arts III. Vol. 2171. pp. 341–352.570

Jain, A., 1989. Fundamentals of Digital Image Processing. Prentice-Hall.571

Kato, Y., Yasuhara, M., 2000. Recovery of drawing order from single-stroke572

handwriting images. IEEE Trans. Pat. Anal. Mach. Intell. 22 (9), 938–949.573

Liwicki, M., Akira, Y., Uchida, S., Iwamura, M., Omachi, S., Kise, K.,574

Sep. 2011. Reliable online stroke recovery from offline data with the data-575

23

embedding pen. Proc. 11th International Conference on Document Analy-576

sis and Recognition (ICDAR 2011), 1384–1388.577

Liwicki, M., Uchida, S., Iwamura, M., Omachi, S., Kise, K., 2010a. Data-578

embedding pen — augmenting ink strokes with meta-information. In: 9th579

Int. Workshop on Document Analysis Systems.580

Liwicki, M., Uchida, S., Iwamura, M., Omachi, S., Kise, K., 2010b. Embed-581

ding meta-information in handwriting — Reed-Solomon for reliable error582

correction. In: 12th International Conference on Frontiers in Handwriting583

Recognition. pp. 51–56.584

MacWilliams, F. J., Sloane, N. J. A., 1977. The Theory of Error-Correcting585

Code. New York: North-Holland Publishing Company.586

Nel, E.-M., du Preez, J. A., Herbst, B. M., 2005. Estimating the pen trajec-587

tories of static signatures using hidden markov models. IEEE Trans. Pat.588

Anal. Mach. Intell. 27 (11), 1733–1746.589

Nguyen, V., Blumenstein, M., 2010. Techniques for static handwriting tra-590

jectory recovery: a survey. In: Proceedings of the 9th IAPR International591

Workshop on Document Analysis Systems. pp. 463–470.592

Plamondon, R., Srihari, S. N., 2000. On-line and off-line handwriting recogni-593

tion: a comprehensive survey. IEEE Trans. Pat. Anal. Mach. Intell. 22 (1),594

63–84.595

Reed, I. S., Solomon, G., 1960. Polynomial codes over certain finite fields.596

Journal of the Society for Industrial and Applied Mathematics 8 (2), 300–597

304.598

Simon, M., Behnke, S., Rojas, R., 2000. Robust real time color tracking. In:599

RoboCup-2000. pp. 239–248.600

Uchida, S., Tanaka, K., Iwamura, M., Omachi, S., Kise, K., 2006. A Data-601

Embedding Pen. In: Tenth International Workshop on Frontiers in Hand-602

writing Recognition.603

URL http://hal.inria.fr/inria-00103878/en/604

Vinciarelli, A., 2002. A survey on off-line cursive script recognition. Pattern605

Recognition 35 (7), 1433–1446.606

24

Highlights

> A pen device for embedding meta-information in offline handwriting
> Reliable Stroke Recovery using SotA-methods and additional ink
> Error-tolerant data-decoding by using Reed-Solomon Codes
> 32 bits embedding is possible allowing for various applications

